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Minimization of Combinational Circuits (6.2) 

Notes:   

• I will post a set of slides that does this very formally later.  They are _really_ good.  Look them over. 

• The text does a pretty good job here (though not as good/formal as the slides).   
 
One good question is “how do we minimize combinational circuits?”  And the answer to that question is more complex 
than you’d think.  Part of the problem is it isn’t clear what it means to minimize.  Do we mean to use the fewest number 
of gates?  If so, we could end up taking something like the canonical sum-of-products and making a really, really, long 
path.  That would greatly slow the clock.   
 
We probably mean to reduce the number of gates as much as possible while keeping the delay bounded by some value.  
In this class, we’ll just look at finding the minimal sum-of-products and product-of-sums forms for a given logic equation.  
This is called two-level logic because the worst-case path through the circuit will consist of exactly two gate delays.  

Motivational Example #1 

Consider the logic statement F(a,b,c)=ab’c+abc+abc’.  You’ll notice that we are using three 3-input AND gates and one 
three input OR gate to implement this logic (let us assume that all literals are available, so a and a’ can both be used and 
don’t require a NOT gate).  What can you do to reduce the complexity of this circuit while keeping ourselves to two 
levels of logic? 
 
First notice that ab’c+abc can be combined (using the “combining rule” from the first lecture of the year).  We can also  
 
combine abc+abc’.  So we get: __________________________ as a simplified version of this.  As you’ve likely noticed, it 
isn’t always easy to find pairs that can combine, and sometimes those pairs are well hidden inside of various terms.    

Motivational Example #2 

Consider the following:  a’b’c+a’cd’+bcd.  It turns out that equation can be reduced to a’c+bcd.  How the heck can we 
figure that out?  One trick is to drop back to the canonical sum-of-products form.  That gets us: 

 
__________________________________________________________________________________ 

 
You might notice that all four the terms that have a’c in them are true.  So we can combine those four into a’c.  That 
leaves abcd.  It can be combined with a’bcd to make bcd. It turns out we can’t combine any more and this point and so 
we’ve succeeded! 
 
We got the right answer this way, but it wasn’t obvious. Heck, it wasn’t obvious that we are done.   So the question is, 
how do we make it obvious?   How can we quickly see what terms combine and prove to ourselves that we are done?  
What we’d like is an easy way to visualize exactly  

What we are looking for 

Say there are 3 variables: a, b and c. A given term (say abc) can be combined with three other terms (a’bc, ab’c and abc’ 

in this case).  We want a way to see those connections quickly. 
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Karnaugh Maps 
Consider ab’c+abc+abc’ from above.  Let’s write the truth table in a rather odd way: 

ab/c   00   01   11   10 

0 0 0 1 0 

1 0 0 1 1 

Notice that box which represents abc is adjacent to the three different terms it can be combined with.  In this case we 
 
can quickly see how the combining rule can be applied.  We end up with two product terms:  _________ and _________ 
 
Now consider 

ab/c   00   01   11   10 

0 1 1 1 1 

1 0 0 0 0 

In this case, we can combine all four terms into a single term:  ____________________ 
 

ab/c   00   01   11   10 

0 1 0 0 1 

1 0 0 0 0 

And notice we “wrap around” the edges.  So this combines to be: ____________________ 
 

Informal Algorithm 
What we are going to do is circle groups of “1s” that are rectangles1  where each side is a power of 2 in length.  The first 
K-map on this page had a 2x1 and a 1x2 rectangle, the second a 1x4 and the third a 1x2.  We never circle a rectangle that 
is part of a larger legal rectangle.  We only circle enough rectangles so that every 1 is circled. 
 

ab/c   00   01   11   10 

0 0 0 1 1 

1 0 1 1 0 

 
Notice that in the K-map above there are three rectangles we could circle, but two of them cover all the “1s”.   
Let’s practice a bit.

ab/c   00   01   11   10 

0 1 1 1 1 

1 0 0 1 0 

 
__________________________ 
 

                                                           
1 Recall a square is special case of a rectangle. 

ab/c   00   01   11   10 

0 1 0 0 1 

1 0 1 1 1 

 
__________________________ 
 

ab/c   00   01   11   10 

0 1 1 1 1 

1 1 1 0 1 

 
__________________________
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An interesting example 
Circle all rectangles: 

ab/c   00   01   11   10 

0 1 1 1 0 

1 1 0 1 1 

 
__________________________

 
Answer  1 

ab/c   00   01   11   10 

0 1 1 1 0 

1 1 0 1 1 

 
__________________________ 

 
Answer 2 

ab/c   00   01   11   10 

0 1 1 1 0 

1 1 0 1 1 

 
__________________________ 

 
 
Terminology (p308-310) 
Notice that we are finding sum-of-products solutions.   

• Recall that a minterm is a product term that includes all of the functions variables exactly once.   

• The on-set of a function is the set of minterms that define when the function should evaluate to 1 (the minterms 
that have a 1 in the truth table.)   

o The off-set is the set of minterms that evaluate to zero. 

• An implicant  of a function is a product term that evaluates to 1 only in places that function evaluates to 1.  (The 
on-set of an implicant of a function is a subset of the on-set of the function.) 
   

o Graphically, in a K-map an implicant is: _______________________________________ 

• An implicant covers those minterms that appears in its on-set. 
 

o What is the on-set of the function F(a,b)=a? _______________________ 
 

o What minterms does that function cover? ________________________ 

• Removing a variable from a term is known as expanding the term.  This is the same as expanding the size of a 
circle on a K-map.  
 

ab/c   00   01   11   10 

0 1 1 0 0 

1 1 1 0 0 

 
 

• Prime implicant: ____________________________________________________________ 
 

• Essential one2: _____________________________________________________________ 
 

• Essential prime implicant: ____________________________________________________ 
 

ab/c   00   01   11   10 

0     

1     

  

                                                           
2 This term isn’t used by our text, they skip from prime implicant directly to essential prime implicant. 

ab/c   00   01   11   10 

0 0 1 1 0 

1 1 1 1 0 
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More Formal Algorithm 

• Identify all prime implicants 

• Identify all essential ones. 

• Circle all essential prime implicants 

• Cover the remaining minterms using a minimal number of remaining prime implicants. 
 

Notice that there may be more than one 
solution.  Also notice that the last step is a bit 
vague ☺ 
 

ab/c   00   01   11   10 

0 1 1 1 0 

1 1 0 0 1 

 

4-variable 
ab/cd   00   01   11   10 

00 0 1 1 0 

01 0 1 1 0 

11 0 0 1 1 

10 0 0 0 0 

 

And some practice with these: 

ab/cd   00   01   11   10 

00 1 1 1 1 

01 0 1 1 0 

11 0 0 1 0 

10 1 1 0 0 

 

________________________ 

ab/cd   00   01   11   10 

00 1 1 0 1 

01 0 0 0 0 

11 0 0 0 1 

10 1 0 0 1 

 

________________________ 

ab/cd   00   01   11   10 

00 0 1 0 0 

01 1 1 1 0 

11 0 1 1 1 

10 0 1 0 0 

 

________________________

What’s left? 

• Don’t cares 

• 5+ variable  

• Product-of-sums 

• Programmable techniques 

• Lots of practice. 

• More context.  Remember this is only for 2-level logic…  
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Don’t cares:  
Note: I’m leaving the zeros blank to make things more readable! 

 

 

 

 

 

 

 

 

 

• Use d cells to make prime implicants as large as possible. 
• No PI should include only d’s 
• Only 1-cells should be considered when finding the minimal cover set. 

 

5-variable 
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Product of Sums: 
Let F be:                                                                Then F’ is: 

 
F➔F’ 
 
 
 

 
Find minimal SoP for F’. 
Use deMorgans. 
 

Programmable techniques 
• Later in the semester, time allowing. 

More context 
Basically, just remember that this doesn’t find the “minimal” solution.  If finds the minimal sum-of-products.  It’s not 

even clear how we would measure “minimal” over all.  Least delay?  Least number of gates?  Least “gate inputs”?  Recall 

we did a “least delay” solution for GA1.  This would have helped find a nice starting point, but wouldn’t have solved the 

problem. 

But this technique does let us find the minimal two-level solution (SoP or PoS).  Which is pretty cool. 

Questions: 

1. Why isn’t this a great technique for a computer?  Why is it good for people? 

 

2. What might be easier for a computer? 

  

 

3. Can you define all the terms we’ve seen? 

• On-set, Off-set? 

• Implicant, prime implicant? 

• Essential one, essential prime implicant? 

• Cover?  

 

4. Why is the instance to the right tricky? 

  

ab/cd   00   01   11   10 

00  1 1 1 

01 1 1 1 1 

11 1 1   

10 1 1   

ab/cd   00   01   11   10 

00   1  

01 1 1 1  

11  1 1 1 

10  1   

 ab/cd   00   01   11   10 

00 1    

01     

11   1 1 

10   1 1 
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State minimization  
One thing to be aware of is that the 2nd edition of our text somehow got worse at covering this material.  I’ve posted the 

relevant 6 pages from the 1st edition on the website, you should take a look at it. 

Motivational Example 
Consider the following two machines.  Are they equivalent?   

  
 
Say x were 0, 1, 1, 0, 0.  What would be the output of the larger one?  The smaller one? Are they always the same?  How 
can you be sure? 
 
 
 

What makes states equivalent?  
Two states are equivalent if 

1. They assign the same values to outputs,  
e.g. S0 and S2 both assign y to 0,S1 and S3 both assign y to 1 

2. AND, for all possible sequences of inputs, the FSM outputs will be the same starting from either state 
Let’s look at this example.  Are any states equivalent? 

 

 
Let’s use an implication table.   

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 

S0, 
S2 

S1, 
S3 

y=0 y=1 

x’ x 

x 

x’ 

S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x x 

x x 

x’ 

x’ 

x’ 

x’ 

Inputs: x; Outputs: y 

S0 
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Which states can’t be equivalent?  Any with differing outputs!  Cross those out.   
 
Now we’ll follow the following algorithm.  Do steps 2&3. 

 
 
What does this look like after step 4? 
  

S0 S1 S2 

S1 

S2 

S3 

S0 S1 

y=0 y=1 

S2 

y=0 

S3 

y=1 

x 

x x 

x’ 

x’ 

x x’ x’ 

Inputs: x; Outputs: y 
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Another Example 
 
 
 
 
 
 
 
 

 
 
 
Now let’s do a final, less trivial, example: 
 
 

 

 

S1 

y=0 y=1 

S2 

y=1 

S3 

y=1 

x x 

x x 

x’ 

x’ 

x’ 

x’ 

Inputs: x; Outputs: y 

S0 

S0 S1 S2 

S1 

S2 

S3 

S3 S0 

y=0 y=0 

y=1 y=1 

S1 S2 

S4 
x 

x’ x’ 

x’ x’ 
x’ x 

x x 

Inputs: x; Outputs: y 

y=0 
S
2 

S
1 

S
3 

S
4 

S
0 

S
1 

S
2 

S
3 


